Solid electrodes could unlock lithium-sulphur cell potential

Scientists at the US Department of Energy’s Oak Ridge National Laboratory have designed and tested an all-solid lithium-sulphur battery claimed to have approximately four times the energy density of conventional lithium-ion technologies.

The ORNL battery design, which uses sulphur, is also said to address flammability concerns experienced by other chemistries.

‘Our approach is a complete change from the current battery concept of two electrodes joined by a liquid electrolyte, which has been used over the last 150 to 200 years,’ said Chengdu Liang, lead author on the ORNL study published in Angewandte Chemie International Edition.

Scientists have been excited about the potential of lithium-sulphur batteries for decades, but long-lasting, large-scale versions for commercial applications have proven elusive.

Researchers were stuck with a catch-22 created by the battery’s use of liquid electrolytes: on one hand, the liquid helped conduct ions through the battery by allowing lithium polysulfide compounds to dissolve. The downside, however, was that the same dissolution process caused the battery to prematurely break down.

The ORNL team overcame these barriers by first synthesising a class of sulphur-rich materials that conduct ions as well as the lithium metal oxides conventionally used in the battery’s cathode. Liang’s team then combined the new sulphur-rich cathode and a lithium anode with a solid electrolyte material, also developed at ORNL, to create an energy-dense, all-solid battery.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox