More in

Stabiliser residue inhibits conductivity in 3D-printed electronics

Nottingham University and the National Physical Laboratory have found that stabiliser residue in metal nanoparticle inks inhibits conductivity in 3D-printed electronics.

Inks containing metal nanoparticles (MNP) are among the most commonly-used conducive materials for 3D-printed electronics. Ink-jetting layers of MNP materials allow for design flexibility, rapid processing and 3D printing of devices such as sensors, solar panels, LED displays, transistors and smart textiles.

A two-step process is used for inkjet 3D printing of metals: solvent evaporation upon printing (pinning) and subsequent low-temperature consolidation of nanoparticles (sintering). Low temperature is important as the nanoparticles are often co-printed with other functional/structural organic materials that are sensitive to higher temperatures.

However, layers produced by inkjet printing of metal nanoparticles have different electrical conductivity between horizontal and vertical directions. This is known as functional anisotropy and is a long-standing problem for 3D-printed electronics.

NCAM project to unlock additive for highly regulated industries

Peregrine swoops on flaws in 3D printing

Previously, reduced vertical conductivity was mainly thought to have been caused by shape and physical continuity problems at the interfaces of the constituent nanoparticles at micro and nanoscale.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox