Stable lithium anode promises efficient rechargeable batteries

Researchers at Stanford University have designed a pure lithium anode.

The advance, described in a paper published in Nature Nanotechnology, could lead to smaller, cheaper and more efficient rechargeable batteries.

‘Of all the materials that one might use in an anode, lithium has the greatest potential,’ said Yi Cui, a professor of Material Science and Engineering and leader of the research team. ‘It is very lightweight and it has the highest energy density. You get more power per volume and weight, leading to lighter, smaller batteries with more power.’

We believe we can realise a practical and stable lithium metal anode that could power the next generation of rechargeable batteries

In addition to Zheng, the research team includes Guangyuan Zheng, a doctoral candidate in Cui’s lab and first author of the paper, and Steven Chu, the former US Secretary of Energy and Nobel Laureate who recently resumed his professorship at Stanford.

‘In practical terms, if we can improve the capacity of batteries to, say, four times today’s, that would be exciting. You might be able to have cell phone with double or triple the battery life or an electric car with a range of 300 miles that cost only $25,000 - competitive with an internal combustion engine getting 40mpg,’ Chu said in a statement.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox