Stanford team builds artificial synapse
Researchers from Stanford University have created an artificial synapse made from organic materials, a development with potential for advanced computing and brain-machine technologies.
(Credit: Manel Torralba via flickr)
When we learn, electric signals are sent around the brain via synapses, creating neural pathways. Less energy is required each time a path is travelled, as the route becomes more defined. This essentially makes learning and memory part of the same process. Reported in the journal Nature Materials, the Stanford device attempts to mimic this behaviour, co-locating processing and memory, and using much less energy than traditional computing while doing so.
The artificial synapse consists of two thin, flexible films with three terminals, connected by a salt-water electrolyte. The device works as a transistor, with one of the terminals controlling the flow of electricity between the other two. By discharging and recharging it repeatedly, the researchers were able to ‘train’ the synapse, and were able to predict within one per cent of uncertainty what voltage was required to get the synapse to a specific electrical state and keep it there.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
The EU and UK will be moving towards using Grid Forming inverters with Energy Storage that has an inherent ability to act as a source of Infinite...