Stretchable system could self-power wearable devices
A new study led by Penn State University has explored the possibility of wearable devices that can harvest energy from human breathing and motion.
According to the research team led by Huanyu ‘Larry’ Cheng, Dorothy Quiggle career development professor in Penn State’s Department of Engineering Science and Mechanics, the use of micro-supercapacitors can enable a ‘stretchable’, self-powered system for use in health-monitoring devices without the ‘shortcomings’ of current batteries and supercapacitors such as low energy density and limited stretchability.
“While working on gas sensors and other wearable devices, we always need to combine these devices with a battery for powering,” said Cheng. “Using micro-supercapacitors gives us the ability to self-power the sensor without the need for a battery.”
Micro-supercapacitors are energy storage devices that can complement or replace lithium-ion batteries, with a small footprint, high power density and the ability to charge and discharge quickly. Cheng noted that when fabricated for wearable devices, conventional micro-supercapacitors have a stacked geometry displaying poor flexibility, long ion diffusion distances and a complex integration process.
Triboelectric nanogenerator points to power for wearable devices
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
I´m sure politicians will be thumping tables and demanding answers - while Professor Bell, as reported above, says ´wait for detailed professional...