Study proposes solutions for space-based quantum internet

Enabling space-based quantum internet services with memory and ‘repeater' devices has been proposed in research by Strathclyde University and international collaborators.

The study suggests that quantum memories (QM) and repeaters, which are used in the transmission of the information, can be deployed to facilitate use of advanced internet technology. This is done through distribution of quantum entanglement, a phenomenon in which two particles are interlinked, potentially at vast distances from each other.

The research showed that satellites equipped with QMs provided entanglement distribution rates which were three orders of magnitude faster than those from fibre-based repeaters or space systems without QMs.

MORE FROM ELECTRONICS & COMMUNICATIONS

The study has been published in the npj Quantum Information. It was led by Humboldt University in Berlin and involved the Institute of Optical Sensor Systems of the German Aerospace Center (DLR) and JPL (Jet Propulsion Laboratory NASA).

In a statement, Dr Daniel Oi, senior lecturer in Strathclyde's Department of Physics, a partner in the research, said: "We show in this paper that this method would have much higher performance than previously proposed schemes and we identify promising physical systems with which to implement it.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox