Swiss team develops more sustainable reinforced concrete

Replacing steel in fibre reinforced concrete with stiff polyethylene and adjusting concrete mix reduces carbon footprint without compromising strength or consistency of wet mixture

If human history can be divided into ages named after materials, we could now be said to be in the steel-and-glass age. But the artefacts of our previous epoch, the concrete age, are still all around us, and concrete underpins the shining structures now being built. It also comprises much of our road and rail infrastructure, but concrete ages, and materials that were used in its formulation decades ago are now deteriorating. Unfortunately, concrete produces more carbon dioxide emissions in its production than almost any other material, so engineers are searching for a more sustainable way of maintaining existing concrete structures.

reinforced concrete
Amir Hajiesmaeili testing the new material. Image: Alain Herzog/EFPL
At the Swiss Federal Institute in Lausanne (EFPL), Iranian PhD student Amir Hajiesmaeili is trying to develop a new generation of ultra high performance fibre reinforced concrete (UHPFRC), and after three years of research has found a mixture which dispenses with the steel fibres commonly used in current UHPFRC, but has similar mechanical properties, is 10 per cent lighter and whose environmental impact is 60-70 per cent lower. _____________________________________________________________________

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox