Synchrotron shines a light on future medical devices

Researchers have used synchrotron light to detect and record complex 3D magnetisation in wound magnetic layers.

According to the international team, this technique could be important in the development of devices that are highly sensitive to magnetic fields, such as in medical diagnostics for example. Their results are published in Nature Communications.

Three-dimensional structures in materials and biological samples can be investigated using X-ray tomography, which is done by recording images layer-by-layer and assembling them on a computer into a three-dimensional mapping.

To date, there has been no comparable technique for imaging 3D magnetic structures on nanometre length scales. Now teams from Helmholtz-Zentrum Berlin for Materials and Energy (HZB) and the Institute of Solid State Physics, Berlin/Dresden University of Technology in collaboration with research partners from Advanced Light Source/Lawrence Berkeley National Laboratory, and UC Santa Cruz have developed a technique with which this is possible.

They studied the magnetisation in rolled-up tubular magnetic nanomembranes (nickel or cobalt-palladium) about two layers thick. To obtain a 3D mapping of the magnetisation in the tubes, the samples were illuminated with circularly polarised X-rays. Using the X-ray microscope at the Advanced Light Source and the X-ray Photoemission Electron Microscopy (XPEEM) beamline at HZB’s BESSY II, the samples were slightly rotated for each new image so that a series of 2D images was created.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox