System speeds up sampling rate of solar cells

1 min read

Tests on new designs for next-generation solar cells can now be done in hours instead of days, claim scientists at Australia's Monash University.

sampling rate of solar cells
A detail from the new 16-channel parallel characterisation system (Image: Adam Surmiak, Xiongfeng Lin)

The team’s machine can analyse 16 sample perovskite-based solar cells simultaneously, in parallel, which speeds up the process. The research is described in Solar RRL.

Semi-transparent solar cells present ‘boon for building owners’

"Third generation perovskite cells have boosted performance to above 25 per cent, which is almost identical to the efficiency level for conventional silicon-based ones," said project leader Adam Surmiak from the ARC Centre of Excellence in Exciton Science (Exciton Science).

"But those results are from laboratory tests on millimetre-sized samples in indoor conditions - and therefore don't take into account a whole range of real-world factors such as environmental conditions, the use to which the cells are put, the manufacturing process, and possible deterioration over time.

"To make proper decisions, we need to know how each different cell design will function at large scales in the real world - and to do that we need a proper data library so we can pick the best candidates to take to that next stage. This new system lets us build that very rapidly and speed up transition from laboratory to fabrication."

Getting the formula right for perovskite solar cells is regarded as critically important for renewable energy generation due to their efficiency and economy; they cost about 10 times less than silicon cells and are cheaper to manufacture.

According to Monash, rooftop solar panels made from perovskite will pay for themselves within months instead of years, which is the case with present models.

To achieve the high level of precision needed to build the system, PhD candidate Surmiak and his colleagues turned to Monash University's Instrumentation Facility and the Melbourne Centre for Nanofabrication, which is part of the Australian National Fabrication Facility. There, the researchers' designs were produced using ultra-detailed milling and a 16-micrometre precision 3D printer.

Alongside the development and set-up of this new testing facility, Surmiak was reportedly able to significantly speed up the actual solar cell fabrication process.

In a statement, Professor Udo Bach, a chief investigator with Exciton Science, described the invention as world-leading.

"Experimental high-throughput concepts will become increasingly important for the discovery of the next generation of energy materials, fuelling the transition to a carbon-neutral energy economy," he said. "Our new set-up has the capacity to test thousands of solar cells in one single day, putting us ahead of practically all other R&D labs worldwide."