Thin layer protection fix for cold weather charging challenge

A self-assembling, thin layer of electrochemically active molecules may be the solution for the development of quick-charging, cold weather batteries for vehicles.  

This is the claim of a team from Penn State University whose findings are published in Nature Energy.

Battery based on metallic lithium claimed to treble electric vehicle range

New coating revitalises lithium metal batteries

"The lithium metal battery is the next generation of battery after the lithium ion battery," said Donghai Wang, professor of mechanical engineering and a key researcher in the Battery and Energy Storage Technology Center, Penn State University. "It uses a lithium anode and has higher energy density, but has problems with dendritic growth, low efficiency and low cycle life."

The researchers said the solution to these problems is a self-assembling monolayer that is electrochemically active so that it can decompose into its proper components and protect the surface of the lithium anode.

The battery is composed of the lithium anode, a lithium metal oxide cathode and an electrolyte which also has lithium-ion conducting materials and the protective, thin film layer. Without this layer, the battery would tend to grow lithium crystal spikes if charged rapidly or under cold conditions, which eventually short out the battery.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox