Tilted nanomagnets open door for advances in computing

A team from the University of California, Berkeley, has discovered a way to reverse the polarisation of nanomagnets without using a magnetic field, opening up the possibility of faster and more energy efficient computing.

The research, published in the Proceedings of the National Academy of Sciencesmeans that the high-density storage of computers could now be incorporated directly into the circuits that perform calculations. This would significantly reduce energy dissipation, increasing the speed of those calculations and improving computer performance.

“To reduce the power draw and increase the speed, we want to be able to manufacture a computer chip that includes memory so that it is close to the computational action,” said Sayeef Salahuddin, an associate professor of electrical engineering and computer sciences, and head of the research team at Berkley.  

“However, the physics needed to create long-term storage are not compatible with integrated circuits.”

Creating a magnetic field for long-term magnetic memory requires power and space, which is why up until now computational and storage systems have always been separate.

Previously, Salahuddin and his colleagues had discovered that passing a current through the rare metal tantalum creates polarity in magnets without an external magnetic field. However, packing them extremely close together on a chip negated this effect. In its latest research, the team discovered that by tilting the nanomagnets slightly, they could be aligned in close proximity yet retain the desired properties.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox