More in

Trapped light bounces through atomic lattices

Hexagonal boron nitride, stacked layers of boron and nitrogen atoms arranged in a hexagonal lattice have been found to bend electromagnetic energy in a way that can be utilised.

In 2014, University of California, San Diego, physicist Michael Fogler and colleagues demonstrated that light could be stored within nanoscale granules of hexagonal boron nitride. Now Fogler’s research group has published a new paper in Nano Letters that elaborates how this trapped light behaves inside the granules.

The particles of light phonon polaritons are said to disobey standard laws of reflection as they bounce through the granules, but their movement isn’t random. Polariton rays propagate along paths at fixed angles with respect to the atomic structure of the material, Folger’s team said. That in turn can lead to “interesting resonances”.

“The trajectories of the trapped polariton rays are very convoluted in most instances,” Fogler said in a statement. “However, at certain…frequencies they can become simple closed orbits.”

When that happens clusters of strongly enhanced electrical fields can emerge. Fogler’s group found those could form elaborate geometric patterns in granules of spheroidal shape.

The polaritons are not only particles but also waves that form interference patterns. When overlaid on the hot contours of enhanced electrical fields, these create strikingly beautiful images.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox