Turbulent equation

Researchers at The Johns Hopkins University have developed a new mathematical formula that could lead to more precise computer models describing turbulent flow.

To most people, turbulence is the jolt felt by jet passengers moving through a rough pocket of air. But to scientists, turbulence is the chaotic flow of a gas or liquid, in which parts of the current curl into irregular, ever smaller, tight eddies.

It's a very common phenomenon that can affect weather conditions, alter the movement of pollutants, dampen a vehicle's speed, or play a role in the way chemicals mix and combustion engines perform. Yet the phenomenon is difficult to understand, and scientists cannot easily predict how a turbulent flow will behave.

While working on this problem, researchers at The Johns Hopkins University developed a new mathematical formula that could lead to more precise computer models describing turbulent flow.

Charles Meneveau, a professor of mechanical engineering, and Yi Li, a doctoral student in the department, unveiled the formula, called the "advected delta-vee equation," in a paper published in the October 14 issue of the journal Physical Review Letters.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox