Two-dimensional materials may catalyse performance of promising lithium-air batteries

Electron-transferring complexes may give electric vehicles ability to cover 400 to 500 miles per charge

Lithium-air batteries are seen as one of the most promising technologies for future energy storage applications. Capable in the theory of storing 10 times more energy than lithium ion batteries and much lower in weight, they are still in development, with their stability and efficiency still not matching expectations. Battery researchers are trying to find catalysts that can increase the rate of the chemical reactions inside the battery, which increases their ability to hold and discharge energy.

Engineers at the University of Illinois at Chicago (UIC) are working on two-dimensional compounds of transition metals – the elements that occupy the central block of the periodic table, which tend to have a large number of electrons per atom that are capable of becoming involved with bonding and electrical activity – with non-metals.

In the journal Advanced Materials, Amin Salehi-Khojin and colleagues from UIC’s College of Engineering describe how a type of compound called transition metal dichalcogenides (TMDCs) enabled lithium-air batteries to hold 10 times more energy than batteries using traditional catalysts. Chalcogenides are compounds incorporating elements of group 16 in the periodic table, including oxygen, sulphur, selenium and tellurium.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox