Ultrasound techniques combined for targeted drug delivery

Ultrasound imaging is being integrated with ultrasound therapy to develop a new kind of targeted drug delivery.

Researchers at the McKelvey School of Engineering and the School of Medicine at Washington University in St Louis are developing the approach, which they’ve dubbed cavitation dose painting. Their research appears in Scientific Reports.

Using focused ultrasound with its microbubble contrast agent to deliver drugs across the blood-brain barrier (FUS-BBBD), the research team, led by Hong Chen, assistant professor of biomedical engineering at McKelvey School of Engineering and assistant professor of radiation oncology at the School of Medicine, overcame some of the uncertainty of drug delivery.

This method takes advantage of the microbubbles expanding and contracting when they interact with the ultrasound, essentially pumping the intravenously-delivered drug to wherever the ultrasound is pointing.

To determine where and how much of the drugs were being delivered, the researchers used nanoparticles tagged with radio labels to represent drug particles, then used positron emission tomography (PET) imaging to track their whereabouts and concentrations. They could then create a detailed image, showing where the nanoparticles were going and in what concentrations.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox