US team 3D-prints nano-scale explosives
US researchers have developed a method for 3D printing tiny amounts of energetic materials such as explosives or propellant.

Devised by a group at Purdue University in Indiana, the ink-jet printing based technique is claimed to deposit energetic materials with unprecedented levels of precision and safety.
Many micromechanical systems incorporate energetic materials in their operation. For example, an automotive airbag inflates using a small amount of solid propellant. The team claims that the new technique will help meet a growing demand for micro-level energetics driven by the continuing trend towards smaller devices.
Jeff Rhoads, professor of mechanical engineering, and principal investigator on the project explained that the technique creates the energetic material in situ by combining two separate components during the printing process. “We can have a fuel and an oxidizer in two separate suspensions, which are largely inert,” he said. “Then, with this custom inkjet printer, we can deposit the two in a specific overlapping pattern, combining them on a substrate to form nanothermite.”
Able to accurately deposit picoliters of material, the machine holds the nozzle stationary and moves a stage below it to form whatever shape is required. “The stage can move with a 0.1 micron precision, which is basically a thousandth the width of a human hair,” said Allison Murray, a PhD student in Purdue’s school of mechanical engineering.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
The EU and UK will be moving towards using Grid Forming inverters with Energy Storage that has an inherent ability to act as a source of Infinite...