Stored energy from electric vehicles (EVs) can be used to power large buildings thanks to new research from Warwick Manufacturing Group (WMG) at the University of Warwick.
Dr Kotub Uddin, along with colleagues from WMG's Energy and Electrical Systems group and Jaguar Land Rover, has demonstrated that vehicle-to-grid (V2G) technology can take enough energy from idle EV batteries for use in the grid and to power buildings without damaging the batteries.
In fact, this new research into the potentials of V2G shows that it could improve vehicle battery life by around ten per cent over a year.
According to the university, Dr Uddin's team spent two years analysing some of the most advanced lithium-ion batteries used in commercially available EVs - and created one of the most accurate battery degradation models existing in the public domain - to predict battery capacity and power fade over time. They did this under various ageing acceleration factors, including temperature, state of charge, current and depth of discharge.
Using this validated degradation model, Dr Uddin developed a 'smart grid' algorithm, which calculates how much energy a vehicle requires to carry out daily journeys, and how much energy can be taken from its battery without negatively affecting it, or even improving its longevity.
The researchers used their 'smart grid' algorithm to see if they could power WMG's International Digital Laboratory - a large building which contains a 100-seater auditorium, two electrical laboratories, teaching laboratories, meeting rooms, and houses approximately 360 staff - with energy from EVs parked on the University of Warwick campus.
They worked out that the number of EVs parked on the campus (around 2.1 per cent of cars, in line with the UK market share of EVs) could spare the energy to power this building - and that in doing so, capacity fade in participant EV batteries would be reduced by up to 9.1 per cent, and power fade by up to 12.1 per cent over a year.
It has previously been thought that extracting energy from EVs with V2G technology causes their lithium-ion batteries to degrade more rapidly.
Dr Uddin's group (along with collaborators from Jaguar Land Rover) have proved, however, that battery degradation is more complex - and this complexity, in operation, can be exploited to improve a battery's lifetime.
Battery degradation is dependent on calendar age, capacity throughput, temperature, state of charge, current and depth of discharge, making V2G an effective tool that can be used to optimise a battery's conditions such that degradation is minimised. Taking excess energy from an idle EV to power the grid actually keeps the battery healthier for longer, the university claims.
"These findings reinforce the attractiveness of vehicle-to-grid technologies to automotive Original Equipment Manufacturers: not only is vehicle-to-grid an effective solution for grid support - and subsequently a tidy revenue stream - but we have shown that there is a real possibility of extending the lifetime of traction batteries in tandem,” said Dr Uddin. "The results are also appealing to policy makers interested in grid decarbonisation."
The research, 'On the possibility of extending the lifetime of lithium-ion batteries through optimal V2G facilitated by an integrated vehicle and smart-grid system' is published in Energy.
Record set at EPFL hyperloop test facility
The problem with hyperloops is capacity. High speed and small vehicles limit capacity. Junction design is key. Road vehicles can change lane with...