Watching cells die

The viscosity of different parts of cancer cells increases when they are blasted with light-activated cancer drugs, according to researchers at Imperial College in London.

The viscosity of different parts of cancer cells increases dramatically when they are blasted with light-activated cancer drugs, according to new images that provide fundamental insights into how cancer cells die.

The images, taken by researchers from Imperial College London, reveal the physical changes that occur inside cancer cells while they are dying as a result of Photodynamic Therapy (PDT). This cancer treatment uses light to activate a drug that creates a short-lived toxic type of oxygen, called singlet oxygen, which kills cancerous cells.

The research team behind the study says that revealing what happens to viscosity within a dying cancer cell is important because it helps give a better understanding of how cells function and which factors are important for controlling reactions inside cells. Ultimately, this could help scientists design more efficient drugs for Photodynamic Therapy and other treatments.

The research is also of wider significance because these are the first ever real-time maps showing viscosity changing over a period of time inside a cell during a biologically important process such as cell death.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox