Zwitterions make implants safer

Neutrally charged polymers known as zwitterions could help prevent the body from developing scar tissue around biomedical devices.

A pair of Florida State University researchers have received a major grant from the US National Institutes of Health (NIH) to study ways of preventing the body from developing scar tissue around biomedical devices such as coronary artery stents - a problem that affects thousands of patients each year.

Joseph Schlenoff, the Mandelkern Professor of Polymer Science, interim chairman of the department of chemistry and biochemistry at FSU, and a member of FSU's Center for Materials Research and Technology (MARTECH), is the principal investigator on a research project that will receive $1.07 million from the NIH over four years. Working with him is the project's co-principal investigator, Thomas Keller, an associate professor of biology at FSU.

Together, Schlenoff and Keller will work to develop ways of coating coronary stents, synthetic heart valves, dialysis apparatus and other biomedical devices with thin films that discourage vascular smooth muscle cells from adhering to their surfaces. Such adhesions often lead to scarring and new blockages - a process known as restenosis.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox