More in

Opinion: Add HPC to your manufacturing toolbox

High performance computing (HPC), once limited to large-scale applications in the automotive, aerospace and defence sectors, is rapidly becoming a fixture in the engineering simulation product design cycle, says Andrew Dean, sales director at OCF.

Once limited to large-scale applications in the automotive, aerospace and defence sectors, over recent years engineering simulation is increasingly being applied to smaller scale, but no less valuable, R&D challenges. As customers demand higher quality products and more choice, companies are having to respond with faster, lower cost prototyping and design, all delivered on time and within budget. To help meet this challenge high performance computing (HPC) is rapidly becoming a fixture in the engineering simulation product design cycle.

New potential

The need for agility is never more apparent than in manufacturing, where we are creating products today more complex than ever, especially when taking advantage of the latest manufacturing techniques such as additive and subtractive manufacturing. Traditional design and manufacture methodologies, as well as the once leisurely timeframes, are simply not the way to stay ahead of the competition today.

High performance computing to boost UK wind generation

Computer-based simulation has been well-established for decades, but we are continuing to see more smaller organisations and engineering teams realising its potential for the first time and being able to take advantage of simulating tests that would be impractical or uneconomical to carry out on physical prototypes.

Affordability too is a huge draw. While designing and testing a product in the computer-generated virtual world before actually building a physical prototype has the key benefit of being fast, it also brings with it lower costs. The benefits mean that engineering simulation makes sense from a financial point of view for a wider range of end-users across various industrial sectors and organisation sizes.

Limitations of the single user workstation model

Whilst the benefits of engineering simulation are clear, in many organisations when the use of engineering simulation becomes an established part of the product development process, innovation can quickly become reduced by IT equipment, often relying on single user workstations, that are being used to process these simulations. Users can be limited in the number of simulations they can run or simulations simply taking too long to complete. This is where HPC comes in.

Centralising resource

In simple terms a HPC cluster combines a number of identical servers, a fast network, and some management tools to give a single pool of compute resource that can be shared across a number of users. Simulations can be submitted to a scheduler (essentially a queue) and run across multiple servers simultaneously, returning results quicker than could ever be possible on a single workstation. Very much divide and conquer.

By centralising resources amongst a number of users, and using the scheduler to queue up jobs, the HPC cluster can be kept busy 24/7, so in addition to being able to deliver results quicker, can also offer much higher utilisation, and therefore simulation throughput, than an equivalent amount of compute capability spread across multiple users. With the additional benefit that users’ workstations are freed up and they can concentrate on other engineering work, rather than waiting around for jobs to finish.

Misconceptions

There is a perception that the entry point to HPC is huge and the complexity of HPC systems makes these systems beyond the reach of organisations using 10’s of high spec workstations for engineering simulation. Whilst I won’t deny there is some inherent complexity this can be mitigated against - the key here is to work with the right partners and with the right technologies – there are software products out there that make adopting these technologies much easier and specialist integrators, like OCF, that take the pain out of designing, installing and managing these systems.

With HPC hardware and software systems evolving to become more powerful and accessible, this has led to them becoming more readily available for faster design iterations.

Opportunity

If manufacturers make HPC tightly integrated with their engineering simulation applications, it can be possible to make HPC just another tool for engineers. Selecting HPC systems can be as straightforward as choosing a printer making it easier to benefit from the capabilities HPC systems give you: high utilisation and scale.

By moving away from engineering simulation being performed on discrete workstations by engineers working in isolation, a HPC system can bring these single sources together into one big, centralised pool. Which results in each individual engineer having access to a much bigger resource.

This in turn means that they can get results back quicker because they can run the same simulation over many more machines, or they can run more complex challenges and expect to get the results back at the same time.

Basically, HPC now enables engineers to do things that they previously weren’t able to do.

Andrew Dean, sales director at OCF