Experimental pacemaker generates power from pig’s heartbeat

Claimed ‘paradigm shift’ could usher in battery-free implantable electrical devices

Researchers in Beijing, working on generating electricity from natural, involuntary movements of the human body, such as the contractions of their hearts, respiration and blood flow have developed a cardiac pacemaker which operates via a piezoelectric film covering the surface of the heart. Tested in a pig, whose heart is a similar size and has similar demands placed on it as a human’s, the device corrected faulty heart rhythm and prevented cardiac deterioration, the team claims. Such devices, which would not be limited to cardiac pacemakers, could represent a paradigm shift in medical implants.

Currently, implanted electrical devices depend on batteries which tend to be bulky, rigid, limited in lifespan and, despite advances in reducing the energy demands of devices, still represent an impediment on the progress of implants. Attention has turned in recent years to using processes that occur in the body itself as a source of power. Involuntary movement is the most widely investigated of these, as it can be turned into electricity through the use of piezoelectric materials which generate a charge when deformed. One drawback that has been encountered is that such devices are often developed using animal models, and laboratory animals tend to be much smaller than humans and therefore require much less energy from the devices to power such functions as cardiac pacing.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox