Stretchy but tough fibres have potential for robotics and textiles
Combining strength of metal core with resilience of polymer sheath creates fibres that absorb energy of internal breakages
Engineers at North Carolina State University have developed a fibre that combines the elasticity of rubber with the strength of a metal, creating a material that could be incorporated into soft robotics or super-tough textiles. Capable of stretching up to 7 times its length without breaking, the fibre can absorb a great deal of energy as it deforms, becoming tougher than both the materials in its composition.
Developed by a team led by Michael Dickey, Alcoa Prof of chemical and biomolecular engineering at NC State, the fibre consists of a gallium metal core surrounded by a sheath of poly (styrene-ethylene butylene-styrene) (SEBS). In a paper in Science Advances, the team explained that the fibre mimics the behaviour of tough biological materials such as collagen or titin, the giant protein which acts as a molecular spring in muscle. "A good way of explaining the material is to think of rubber bands and metal wires," said Dickey. "A rubber band can stretch very far, but it doesn't take much force to stretch it. A metal wire requires a lot of force to stretch it, but it can't take much strain - it breaks before you can stretch it very far. Our fibres have the best of both worlds.”
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
The EU and UK will be moving towards using Grid Forming inverters with Energy Storage that has an inherent ability to act as a source of Infinite...