Smarticle robots built from smaller swarming robots
Swarming 3D printed smarticles unlock new method of robot locomotion and may be able to form load-bearing structures
An accidental discovery about construction staples led to the development of the swarming robots. Nick Gravish, a doctoral student at Georgia Tech working on a project with the Army Research Laboratory, found that if these heavy duty staples were poured into a box with removable sides, they would self-assemble into tower structures that will stay standing even if the box was disassembled. This, he realised, meant that entangling simple structures could lead to the formation of a composite structure with mechanical properties well beyond those of the original structures.
Developing this idea with Prof Dan Goldman, a Georgia Tech physicist, Gravish designed small robots, around 5 cm across, which could be built on a 3D printer and were capable only of one basic action: flapping their arms up and down. However, when five of these smart active particles – or smarticles – are confined in a circle, they begin to nudge each other and form a robophysical system known as a supersmarticle that can move by itself. As the researchers explain in Science Robotics, adding a light or sound sensor to the smarticles allows the supersmarticle to move in response to the stimulus.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
The EU and UK will be moving towards using Grid Forming inverters with Energy Storage that has an inherent ability to act as a source of Infinite...