More in
US researchers demonstrate handheld 3D bioprinter
Biomedical Researchers at the University of Connecticut in the US have developed a handheld 3D bioprinter that they claim could change the way that musculoskeletal surgical procedures are performed.
The bioprinter, developed by Dr. Ali Tamayol, associate professor in the School of Dental Medicine biomedical engineering department, enables surgeons to deposit scaffolds to help support cellular and tissue growth directly into the defect sites within weakened skeletal muscles.
Netherlands team demonstrates rapid 3D bioprinting
Your questions answered: 3D bioprinting
The scaffolds from the bioprinter adhere precisely to the surrounding tissues of the injury and mimic the properties of the existing tissue; eliminating the need for any suturing. "The printer is robust and allows proper filling of the cavity with fibrillar scaffolds in which fibers resemble the architecture of the native tissue," said Tamayol.
The system prints gelatin-based hydrogels - known as "bioink" - that have been proven to be effective in adhering to defect sites of mice with volumetric muscle loss injury. The mice showed a significant increase in muscle hypertrophy following Tamayol's therapy. "This is a new generation of 3D printers than enables clinicians to directly print the scaffold within the patient's body," said Tamayol.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
The EU and UK will be moving towards using Grid Forming inverters with Energy Storage that has an inherent ability to act as a source of Infinite...