2D materials tuned to dissipate heat in electronic devices

Researchers have found a way of controlling the thermal conductivity of 2D materials, a development that will allow designers to dissipate heat in electronic devices made from these materials.

Two-dimensional materials have a layered structure, with each layer having strong bonds in plane, and weak bonds out of plane. These materials have unique electronic and chemical properties, and hold promise for use in creating flexible, thin, lightweight electronic devices.

For many of these potential applications, it's important to be able to dissipate heat efficiently but challenges arise because in 2D materials heat is conducted differently in plane than it is out of plane.

In TMDs (transition metal dichalcogenides), for example, heat is conducted at 100 watts per meter per Kelvin (W/mK) in plane and 2W/mK out of plane, giving a thermal anisotropy ratio of about 50.

To better understand the thermal conduction properties of 2D materials, a team of researchers from North Carolina State University (NC State), the University of Illinois at Urbana-Champaign (UI) and the Toyota Research Institute of North America (TRINA) began experimenting with molybdenum disulphide (MoS2), which is a TMD.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox