3D-printed device removes toxins from blood

Nanoengineers at the University of California, San Diego have developed a 3D-printed device inspired by the liver to remove toxins from the blood. 

The device, designed for use outside the body uses nanoparticles to trap pore-forming toxins that can damage cellular membranes and are a key factor in illnesses that result from animal bites and stings, and bacterial infections. Their findings were published May 8 in the journal Nature Communications.

Nanoparticles have already been shown to be effective at neutralising pore-forming toxins in the blood, but if those nanoparticles cannot be effectively digested, they can accumulate in the liver creating a risk of secondary poisoning, especially among patients who are already at risk of liver failure.

To solve this problem, a research team led by nanoengineering professor Shaochen Chen created a 3D-printed hydrogel matrix to house nanoparticles, forming a device that mimics the function of the liver by sensing, attracting and capturing toxins routed from the blood. The device also turns red when toxins are captured.

The device, currently at proof-of-concept stage, mimics the structure of the liver but has a larger surface area designed to attract and trap toxins within the device. In an in vitro study, the device is said top have completely neutralised pore-forming toxins.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox