Biomimetic metal-eating robot navigates with no computer
Researchers at Penn State University have developed a small metal-eating robot that mimics how bacteria navigate and search for food.
Rather than carrying a heavy onboard battery, the robot is powered using an environmentally controlled voltage source, or ECVS. While in contact with a metal surface, the ECVS unit catalyses an oxidation reaction with the surrounding air, essentially ‘eating’ the metal and powering the robot with the freed electrons.
Sea mussels to inspire offshore wind farm solutions
In a paper published in Advanced Intelligent Systems, the Penn State team describes how the left and right wheels of the robot are powered by different ECVS units. This enables a basic form of navigation and foraging where the robot will automatically steer toward metal surfaces it can harvest power from, without assistance from a computer. The rudimentary form of navigation takes inspiration from the natural world, according to the team.
"Bacteria are able to autonomously navigate toward nutrients through a process called chemotaxis, where they sense and respond to changes in chemical concentrations," said James Pikul, assistant professor in Penn Engineering's Department of Mechanical Engineering and Applied Mechanics.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
WildFusion helps robot traverse difficult terrain
<a...