Catalyst improves methane combustion performance

Researchers from Penn - University of Pennsylvania, along with collaborators from Italy and Spain, have created a material that catalyses the burning of methane 30 times better than currently available catalysts.

According to a statement, the discovery offers a way to more completely exploit energy from methane, potentially reducing emissions of this powerful greenhouse gas from vehicles that run on natural gas. The catalyst may also offer a cleaner and cheaper way of generating energy from catalytic combustion in gas turbines.

‘It’s hard to come up with materials that are active enough and stable enough to withstand the harsh conditions of methane combustion,’ said Raymond J Gorte, the Russell Pearce and Elizabeth Crimian Heuer professor in the University’s department of chemical and biomolecular engineering. ‘Our materials look promising for some important applications.’

Catalysts that are currently available to burn methane do not do so completely, leaving unburned methane to escape into the atmosphere.

‘Particularly if you have a natural-gas engine, methane is going to be a major part of that tailpipe exhaust,’ Gorte said.

In addition, these conventional catalysts can require high temperatures of 600°C to 700°C to encourage reactions. Yet the catalysts themselves often lose their efficiency or deactivate when exposed to the high temperatures generated by methane combustion.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox