Catalyst produces ethylene and formaldehyde from methane
Scientists have discovered a method to control the gas-phase-selective catalytic combustion of methane, so that the reaction produces ethylene at room temperature and formaldehyde at lower temperatures.

Being able to catalyse these reactions — at or below room temperature — may lead to significant cost savings in the synthesis of plastics, synthetic fuels and other materials.
‘The beauty of this process is that it allows us to selectively control the products of this catalytic system so that if one wishes to create formaldehyde, and potentially methyl alcohol, one burns methane by tuning its reaction with oxygen to run at lower temperatures, but if it’s ethylene one is after, the reaction can be tuned to run at room temperature,’ said Prof Uzi Landman, director of the Center for Computational Materials Science at Georgia Tech, who conducted the research with counterparts at the University of Ulm.
Last year, a team that included theorists Landman and Robert Barnett from Georgia Tech and experimentalists Thorsten Bernhardt and Sandra Lang from the University of Ulm found that, by using gold dimer cations as catalysts, they could convert methane into ethylene at room temperature.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
I´m sure politicians will be thumping tables and demanding answers - while Professor Bell, as reported above, says ´wait for detailed professional...