More in

Convex nanoscale shells improve performance of photodetectors

The speed and efficiency of photodetectors could be improved with shell-shaped coverings developed at King Abdullah University of Science and Technology (KAUST) that allow omnidirectional light capture.

According to KAUST, optical-cavity designs have sought efficiencies of light either by trapping the electromagnetic wave, or confining light to the active region of the device to increase absorption. Most use micrometre-or nanometre-scale spheres in which the light propagates around in circles on the inside of the surface, a phenomenon called whispering gallery mode.

Former KAUST scientist Der-Hsien Lien, a postdoctoral researcher at the University of California, Berkeley, and his colleagues from China, Australia and the US have shown that a more complex geometry comprising convex nanoscale shells improves the performance of photodetectors by increasing the speed at which they operate and enabling them to detect light from all directions. The work is described in Advanced Materials.

Surface effects play an important role in the operation of some devices, said KAUST principal investigator, Jr-Hau He. Nanomaterials offer a way to improve performance because of their high surface-to-volume ratio. “However, although nanomaterials have greater sensitivity in light detection compared to the bulk, the light–matter interactions are weaker because they are thinner,” said He. “To improve this, we design structures for trapping light.”

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox