Electrochemical DAC promises up to 50 per cent energy gains
Researchers in the US have developed an electrochemical process for direct air capture which they claim could cut energy consumption by 20-50 per cent.
Direct air capture (DAC) – where CO2 is pulled directly from the atmosphere – is viewed as an essential tool to mitigate the worst effects of the climate crisis. Existing methods generally use heat to release chemically captured CO2, but this process requires significant energy, which in turn poses economic challenges for the technology.
Developed at Rice University, the new DAC technique uses a single-step electrochemical processes to separate CO2 from carbonate and bicarbonate solutions (NaHCO3/Na2CO3). Rice engineers used a modular porous solid electrolyte (PSE) reactor to harvest the CO2, generating an alkaline absorbent (NaOH ). The work is published in Nature Energy.
“Our research findings present an opportunity to make carbon capture more cost-effective and practically viable across a wide range of industries,” said corresponding author Haotian Wang, Associate Professor of Chemical and Biomolecular Engineering at Rice.
“Our reactor can efficiently split carbonate and bicarbonate solutions, producing alkaline absorbent in one chamber and high-purity carbon dioxide in a separate chamber. Our innovative approach optimises electrical inputs to efficiently control ion movement and mass transfer, reducing energy barriers.”
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
The EU and UK will be moving towards using Grid Forming inverters with Energy Storage that has an inherent ability to act as a source of Infinite...