Flying “ionic wind” propeller allows rotor to act as engine
Electric device is first of its kind to fly in atmosphere, and opens up new ionic wind propulsion paradigm
Electrical engineering students at the State University of New York Oswego (SUNY Oswego) developed the rotorcraft-type flying propeller as part of investigations into corona discharge and ionic wind, an effect which has been known since the 18th century. The team, directed by Adrian Ieta, a member of the electrical and computer engineering faculty, are now pursuing a patent on the technology, which they believe could open a new field of technological development.
Ionic wind is generated when a high voltage is applied between asymmetric electrodes in air, stripping electrons from gas molecules and creating charged ions in an electric field. If one electrode has a sharp edge, the result is a flow of air. “The ions are accelerated by the electric field and in their collisions with neutral molecules create an overall movement of the air from the sharp electrode to the counter electrode also known as ionic wind, corona wind or electrodynamic (EHD) flow,” Ieta explained.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Construction industry lags in tech adoption
Are these the best people to ask "Insights from 2,000 Industry Leaders"? - what would their customers views be like (perhaps more...