Fusion analysis suggests promise for smaller, cheaper reactors
New analysis of experimental plasma containment devices suggests that making energy from nuclear fusion might not require the building of enormous, complicated fusion reactors.
Alan Costley, a physicist working for the company Tokomak Solutions in Culham, Oxfordshire, has written a paper in the journal Nuclear Fusion which suggests that there may only be a weak link between the size of a magnetic-confinement fusion reactor and the point at which it produces more power than it takes to operate.
Until now, most fusion research has focused on the principle that ‘bigger is better’. The best-researched and most advanced form of nuclear fusion device is the tokamak, a toroidal (doughnut-shaped) vacuum vessel surrounded by powerful electromagnets that both confine a hydrogen plasma (a mixture of different isotopes of hydrogen, in a state where their charged nuclei are separated from their associated electrons) and force the plasma particles to circulate around the torus. The combination of the magnetic squeezing and the speed of the particles (to which other devices also contribute) forces the nuclei to collide at high energies, fusing together to form helium nuclei and releasing a burst of energy.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
The EU and UK will be moving towards using Grid Forming inverters with Energy Storage that has an inherent ability to act as a source of Infinite...