Hybrid membrane could help promote CCUS deployment
Researchers at Ohio State University have developed a hybrid membrane claimed to combine the separation performance of inorganic membranes with the cost effectiveness of polymer membranes.

The technology is said to have commercial potential for use in coal-fired power plants with carbon capture, utilisation and storage (CCUS) systems.
Before the carbon dioxide (CO2) generated at a power plant can be securely stored or put to beneficial use, it must first be separated from the flue-gas stream. Energy costs associated with this process are, however, too high to make rapid commercial deployment of CCUS technologies feasible.
To overcome this barrier, high-performance membrane separation is a focus of the US Department of Energy’s Fossil Energy (FE) Carbon Capture Program, under which the Ohio State project is managed.
Membranes consist of thin layers of either polymer (organic, plastic) or inorganic (metal, ceramic) materials that are permeable to the molecules they are meant to capture, such as water, CO2 or oxygen.
The layers are generally deposited on a membrane support structure; polymer membranes are mass produced and are very cost effective, while inorganic membranes are expensive to produce but exhibit better performance.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
New IET report examines grid transmission costs
In the rural East Midlands, the countryside is criss-crossed with power lines, due to the legacy of Coal Fired Power Stations built every few miles...