Insights from wriggling fish may improve robot design

Constant and seemingly random movement of fish serves to optimise their sensory feedback, which may enhance the way sensors are deployed in robot design

One characteristic of any large group of animals IS they seem to move constantly and almost at random. It is particularly pronounced when observing a large number of fish; they flicker and wriggle in a constant blur of sparkling scales. Researchers at Johns Hopkins University have found that these movements are in fact not random at all, but serve to maximise what the fish can extract from their environment, a finding that the researchers believe may have profound implications for robot design.

Mechanical engineer and roboticist Noah Cowan, who led the study, explains that it was already known that all animals have to actively move in order to sense their environment. “There’s a saying in biology that when the world is still, you stop being able to sense it,” he said. To test how this worked, he and his colleagues, including researchers from the New Jersey Institute of Technology (NJIT), studied fish that generate a weak electric field around their bodies, which is believed to help them sense their environment and communicate with each other.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox