Laser light
Engineering researchers from Harvard University have demonstrated a laser with a wide-range of potential applications in chemistry, biology and medicine.
Called a quantum cascade (QC) laser nanoantenna, the device is capable of resolving the chemical composition of samples, such as the interior of a cell, with unprecedented detail.
The device consists of an optical antenna fabricated on the facet of a quantum cascade laser that emits infrared light with a wavelength of 7 microns.
The optical antenna consists of two gold rectangles, each 1.2 microns long, separated by a narrow gap of 100nm. Light from the laser illuminates the antenna, resulting in an intense spot of light in the gap seventy times smaller than the wavelength - far smaller than what would be possible by forming a spot of light using a lens.
Because the nanoantenna creates a light spot of nanometric size about fifty to hundred times smaller than the laser wavelength, the light spot can be scanned across a specimen to provide chemical images of the surface with superior spatial resolution.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
I´m sure politicians will be thumping tables and demanding answers - while Professor Bell, as reported above, says ´wait for detailed professional...