Magnetic iron nanowires track living cells in real time

The location and migration of living cells could be non-invasively tracked in real time using a new method developed by researchers in Saudi Arabia.

The technique from a team at KAUST is said to use magnetic core-shell iron nanowires as nontoxic contrast agents, which can be implanted into live cells, lighting up those cells’ location inside a living organism when scanned with magnetic resonance imaging (MRI). The technique could have applications ranging from studying and treating cancer to tracking live-cell medical treatments, including stem cell therapies.

Targeting cancer with guided iron nanowires

Salinity sensor provides long view of oceanic health

Jürgen Kosel and his team recently showed that core-shell iron nanowires could selectively kill cancer cells with a combination attack, delivering an anticancer drug into target cells while also puncturing the cell’s membrane and releasing heat into it.

Along with researchers from the CIC biomaGUNE in San Sebastian, Spain, the team has shown that the same type of iron core, iron-oxide shell nanowires, can be used for non-invasive medical imaging. According to KAUST, the nanowires could potentially be used as ‘theranostic’ agents, able to identify, track and then take out target cells. Their results are published in the Journal of Nanobiotechnology.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox