Manchester mission to improve low altitude satellites
A University of Manchester-led space project – scheduled for launch later this summer- will trial technologies that could enable satellites to operate at far lower altitudes than existing systems.
Funded through the EU’s Horizon 2020 programme, the €5.7 million DISCOVERER project aims to drive the development of smaller, lighter and more economical Earth observation satellites that operate in very low Earth orbits (under 450km altitude). Orbiting much closer to the Earth helps them to avoid space debris and improves the quality of images they can send back.
The University’s so-called Satellite for Orbital Aerodynamics Research (SOAR) - a type of CubeSat - will be launched on SpaceX’s CRS-22 mission on 3 June 2021 from Kennedy Space Center, Florida to the International Space Station from where it will be deployed into orbit.
Whilst in orbit the satellite will be controlled from a ground station based on the University campus where scientists will study the interactions between the residual atmosphere in these low orbits and new materials developed at the university that could reduce drag and increase aerodynamic performance.
Dr Peter Roberts, the scientific coordinator for DISCOVERER said: “We’re breaking new ground with a satellite designed specifically to explore aerodynamic effects in very low Earth orbits, whilst simultaneously measuring atmospheric parameters such as density and composition.”
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
The EU and UK will be moving towards using Grid Forming inverters with Energy Storage that has an inherent ability to act as a source of Infinite...