MRAM breakthrough
A team of researchers at The Johns Hopkins University has created tiny, irregularly shaped cobalt or nickel rings that can serve as memory cells.

By utilising magnetic random-access memory (MRAM), computers would retain their data during power loss and hard drives the size of a coin could store over 100 films.
The current challenge, however, is the design of a fast, reliable and inexpensive way to build stable and densely packed magnetic memory cells.
A team of researchers at The Johns Hopkins University, writing in the current issue of Physical Review Letters, has come up with one possible answer: tiny, irregularly shaped cobalt or nickel rings that can serve as memory cells.
These "nanorings" can store a great quantity of information. They are also immune to the problem of "stray" magnetic fields, which are fields that "leak" from other kinds of magnets and can interfere with magnets next to them.
"It's the asymmetrical design that's the breakthrough, but we are also very excited about the fast, efficient and inexpensive method we came up with for making them," said paper co-author Frank Q. Zhu, a doctoral candidate in the Henry A. Rowland Department of Physics and Astronomy in the Krieger School of Arts and Sciences at Johns Hopkins.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
I´m sure politicians will be thumping tables and demanding answers - while Professor Bell, as reported above, says ´wait for detailed professional...