Nanofibre spheres 'a significant advance in tissue repair'
Scientists at Michigan University have made biodegradable polymer spheres that can carry living cells into wounds, where they can form new tissue.

Developing the nanofibre sphere as a cell carrier that simulates the natural growing environment of the cell is a very significant advance in tissue repair, according to Peter Ma, a professor at Michigan University School of Dentistry, who led the team of researchers that developed the spheres.
Ma said the nanofibrous hollow microspheres are highly porous, which allows nutrients to enter easily. Additionally, the nanofibres in the hollow microspheres generate few degradation byproducts that can damage the cells.
In use, the nanofibrous hollow spheres would be combined with cells and then injected into a wound. The nanofibre spheres, which are slightly bigger than the cells they carry, would then degrade at the wound site. The cells they carry, which would have already started to grow owing to the fact that the spheres provide an environment in which they naturally thrive, would then be deposited at the wound site.
The next step for the research team is to see how the cell carrier works in larger animals — and eventually in people — to repair cartilage and other tissue types.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
The EU and UK will be moving towards using Grid Forming inverters with Energy Storage that has an inherent ability to act as a source of Infinite...