New algorithm helps robots avoid collisions with moving objects
Electrical engineers have developed a faster collision detection algorithm that uses machine learning to help robots avoid moving objects and negotiate rapidly changing environments in real time.
Developed at the University of California San Diego, the Fastron algorithm is said to run up to eight times faster than existing collision detection algorithms.
The engineers, led by Prof Michael Yip envision Fastron being useful for robots that operate in human environments where they work with moving objects and people fluidly. They are also exploring robot-assisted surgeries using the da Vinci Surgical System. In this scenario, a robotic arm would autonomously perform assistive tasks – such as suction, irrigation or pulling tissue back - without obstructing the surgeon-controlled arms or the patient's organs.
The team also envisions that Fastron can be used for robots that work at home for assisted living applications.
Existing collision detection algorithms spend time specifying all the points in a given space -the specific 3D geometries of the robot and obstacles - and performing collision checks on every single point to determine whether two bodies are intersecting at any given time.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
The EU and UK will be moving towards using Grid Forming inverters with Energy Storage that has an inherent ability to act as a source of Infinite...