New displays from magnetically responsive liquid crystals

Chemists at the University of California, Riverside have constructed liquid crystals with optical properties that can be instantly and reversibly controlled by an external magnetic field. 

According to the university, the research paves the way for novel display applications relying on the instantaneous and contactless nature of magnetic manipulation-such as signage, posters, writing tablets, and billboards. Study results appear online in Nano Letters.

Commercially available liquid crystals, used in modern electronic displays, are composed of rod-like or plate-like molecules. When an electric field is applied, the molecules rotate and align themselves along the field direction, resulting in a rapid tuning of transmitted light.

‘The liquid crystals we developed are essentially a liquid dispersion, a simple aqueous dispersion of magnetic nanorods,’ said Yadong Yin, an associate professor of chemistry, who led the research project. ‘We use magnetic nanorods in place of the commercial non-magnetic rod-like molecules. Optically these magnetic rods work in a similar way to commercial rod-like molecules, with the added advantage of being able to respond rapidly to external magnetic fields.’

Yin said that upon the application of a magnetic field, the nanorods spontaneously rotate and realign themselves parallel to the field direction, and influence the transmittance of polarised light.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox