New production technique could pave the way for flexible electronic components
Exeter team develops method to embed materials with complex electronic properties within two-dimensional materials without damaging them, with potential for flexible electronics.
The discovery of Dr Freddie Withers of Exeter University and his colleagues is related to manufacturing very small electronic devices using two-dimensional materials, which would have the additional property of flexibility along with their compactness. It involves assemblies of single atom thick crystalline materials such as graphene.
The issue that Withers is addressing is the construction of semiconductor logic gates – the basic component of all computing systems which allow current to flow under some conditions but not others, thereby enabling “on or off” digital operations. These depend on insulators that can block the flow of electrons, but as devices get smaller, insulator layers have become so thin that electrons can leak through them via quantum mechanical effects. Therefore, researchers have been looking at replacing insulators with oxides that have a high dielectric constant (known as high-k). Such materials can store large amounts of electrical energy in an electric field, and therefore can act as better electrical insulators when they are very thin. However, current methods for depositing high-K materials are not compatible with two-dimensional materials.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
I´m sure politicians will be thumping tables and demanding answers - while Professor Bell, as reported above, says ´wait for detailed professional...