Nozzle nobbles heat
Researchers have created a spray cooling method for computer chips that can remove heat at rates up to three times faster than other spray techniques.
Professor Tim Shedd, a mechanical engineer at the University of Wisconsin-Madison and graduate student Adam Pautsch have created a spray cooling method for computer chips that early tests show can remove heat at rates up to three times faster than other spray techniques.
Rather than wetting computer chips with a cone-shaped shower of coolant as do existing devices, the new system drenches chips with high velocity lines of liquid, much like sheets of wind-driven rain.
"As far as the density of heat goes, this technology can remove up to four times what the space shuttle experiences upon re-entry," says Shedd, "which is performance we haven't seen before."
The key, he says, is that when it contacts the chip, the coolant mimics a boiling liquid, one of the most efficient and widely used means to remove heat, while avoiding the problems true boiling can cause.
"Ever since we began boiling liquids inside heat exchangers, we haven't really seen any dramatic shifts in the basic mechanisms of heat exchange," says Shedd. "With this technology we're taking advantage of new ways to think about heat transfer."
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Comment: The UK is closer to deindustrialisation than reindustrialisation
"..have been years in the making" and are embedded in the actors - thus making it difficult for UK industry to move on and develop and apply...