Plastic scaffold
Scientists have developed a way to grow stem cells and other tissue in the laboratory in conditions similar to the way they grow in the human body.
The technology, developed and patented by scientists at Durham University and its spin-out company ReInnervate, is a plastic scaffold which allows cells to be grown in a more realistic three-dimensional (3D) form compared to the traditional flat surface of a Petri dish.
Evidence gathered by the research team shows that the technology is an inexpensive, straightforward way of cultivating cells in 3D. Using it could lead to more successful drug development programmes and a reduction in unnecessary tests on animals.
A large proportion of drugs fail at the testing stage, costing industry millions of pounds in research and development costs and failed drugs trials every year. At the moment, most drugs in development are first tested on cells grown in two-dimensions (2D) in standard laboratory equipment such as Petri dishes or flasks but cells in the human body form tissues and grow in more complex, three-dimensional ways.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
I´m sure politicians will be thumping tables and demanding answers - while Professor Bell, as reported above, says ´wait for detailed professional...