Predictable nanotube structures point to silicon replacement
Researchers at the University of Southern California (USC) have produced carbon nanotubes with specific, predictable atomic structures.

‘We are solving a fundamental problem of the carbon nanotube,’ said Chongwu Zhou, professor in the Ming Hsieh Department of Electrical Engineering at the USC Viterbi School of Engineering and corresponding author of the study published August 23 in the journal Nano Letters. ‘To be able to control the atomic structure, or chirality, of nanotubes has basically been…a dream in the nanotube field.’
Carbon nanotubes have shown promise in applications ranging from optics, energy storage and touch screens. It is claimed that this research discovery on how to control the atomic structure of nanotubes will pave the way for computers that are smaller, faster and more energy efficient than those reliant on silicon transistors.
‘We are now working on scale up the process,’ Zhou said in a statement. ‘Our method can revolutionise the field and significantly push forward the real applications of nanotube in many fields.’
Until now, scientists were unable to ‘grow’ carbon nanotubes with specific attributes — such as metallic rather than semiconducting — instead getting mixed, random batches and then sorting them. The sorting process also shortened the nanotubes significantly, making the material less practical for many applications.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
The EU and UK will be moving towards using Grid Forming inverters with Energy Storage that has an inherent ability to act as a source of Infinite...