Researchers convert CO2 into isobutanol using electricity

Researchers at the UCLA Henry Samueli School of Engineering and Applied Science have demonstrated a method for converting CO2 into liquid fuel isobutanol using electricity.

Currently, electrical energy generated by various methods is still difficult to store efficiently. Chemical batteries, hydraulic pumping and water splitting suffer from low-energy-density storage or incompatibility with current transportation infrastructure.

In a study published on 30 March in the journal Science, James Liao, UCLA’s Ralph M Parsons Foundation Chair in Chemical Engineering, and his team report a method for storing electrical energy as chemical energy in higher alcohols, which can be used as liquid transportation fuels.

‘The current way to store electricity is with lithium-ion batteries, in which the density is low, but when you store it in liquid fuel the density could actually be very high,’ Liao said in a statement. ‘In addition, we have the potential to use electricity as transportation fuel without needing to change current infrastructure.’

Liao and his team are said to have genetically engineered a lithoautotrophic micro-organism (Ralstonia eutropha H16) to produce isobutanol and 3-methyl-1-butanol in an electro-bioreactor using CO2 as the sole carbon source and electricity as the sole energy input.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox