Sodium-detecting breast cancer scan 'can minimise biopsies'

A joint research team is developing a new breast cancer screening technique that could reduce false positives and potentially minimise the need for biopsies.

Led by Brigham Young University (BYU) electrical engineer Neal Bangerter and University of Utah collaborators Rock Hadley and Joshua Kaggie, the group has created an MRI device that could improve both the process and accuracy of breast cancer screening by scanning for sodium levels in the breast.

‘The images we’re obtaining show a substantial improvement over anything that we’ve seen using this particular MRI technique for breast cancer imaging,’ said Bangerter, senior author on a study detailing the method in academic journal Magnetic Resonance in Medicine.

Specifically, the device is said to be producing as much as five-times more accurate images than previous efforts with an emerging methodology called sodium MRI.

Currently, there are two clinical imaging methods widely used for screening breast cancer: mammograms and proton MRI scans.

X-ray mammography is the most common screening tool, but the procedure involves x-ray exposure and is generally unpleasant. Mammograms are relatively inexpensive, but they still lead to biopsies when anomalies are detected.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox