Speedy muscles
MIT researchers have proposed a new theory that might eliminate the limited speed and control of present day artificial muscles.
researchers led by Professor Sidney Yip have proposed a new theory that might eliminate the limited speed and control of present day artificial muscles.
Currently, robotic muscles move 100 times slower than ours. But potentially, engineers applying the Yip lab's new theory could boost those speeds -- making robotic muscles 1,000 times faster than human muscles -- with virtually no extra energy demands and the added bonus of a simpler design.
In the past few years, engineers have made artificial muscles that actuate, or drive, robotic devices from conjugated polymers.
"Conjugated polymers are also called conducting polymers because they can carry an electric current, just like a metal wire," says Xi Lin, a postdoctoral associate in Yip's lab, whereas conventional polymers like rubber and plastic are insulators and do not conduct electricity.
And these conjugated polymers can actuate on command if charges can be sent to specific locations in the polymer chain in the form of "solitons" (charge density waves). Solitons are highly mobile charge carriers that exist because of the special nature (the one-dimensional chain character) of the polymer.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Scientists boost air pollution simulation
In the interest of factual accuracy, the commonly used particle sizes of concern for monitoring air pollution are PM10 and PM2.5, which are sub 10 and...