Synthetic peptides and electric fields combine to improve integration of implants
Australian research is claimed to reduce risk of post-operative infection and improve the integration of surgical implants
The use of implanted structures and devices in medicine has become increasingly common in recent decades. However, the biggest problem in this field has been and remains the body's ability to recognise and reject foreign material.
While physicians want their implants to be accepted by the body and – in the case of joint replacements, for example – incorporated into the natural structures, poor integration is a constant risk. Moreover, if infection sets in around the implant, the increasing prevalence of antibiotic resistant bacteria means that the implant often has to be removed, necessitating more risky surgery.
A team from the Applied Plasma Physics and Surface Engineering Laboratory at the University of Sydney has now developed a method for attaching custom-made peptide molecules – essentially short fragments of proteins – to the surface of implants. This coating, they claim, provides biological signals to the surrounding tissue that suppress the immune response and encourage good integration.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
The EU and UK will be moving towards using Grid Forming inverters with Energy Storage that has an inherent ability to act as a source of Infinite...